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EVALUATION

The necessity for more complex software systems in such areas as
command and control and avionics has led to the desire for better
nethods for predicting software errors to insure that software
produced is of higher quality and of lower cost. This desire has been
expressed in numerous indusctry and Government sponsored conferences,
as well as in documents such as the Joint Commanders’ Software
Reliability Working Group Report (Nov 1975). As a result, numerous
efforts lave been {initiated to develop and validate mathematical
models for predicting such quantities as the number of remaining
errors in a software package, the time to achieve a desired
reliability level, and a measure of the software reliability. However,
carly ¢ttorts have not produced models with the desired accuracy of

prediction and with the necessary confidence limits for general model
usay e,

This effort vas initiated in response to this need for developing
better and more accurate software error prediction models and fits

into the goals of RADC TPO No. S5, Software Cost Reduction (formerly
RADC TPO No. 11, Software Sciences Technology), in the subthrust of ~
Software Ouality (Software todeling). This report summarizes the
development of a mathematical model for predicting quantities such as
the expected number of remaining errors, achieved reliability, and
time to detect and correct a specified number of errors that assumes a
software error 1is not corrected at a given time with probability 1
(i.e. imperfect debugging). The importance of this development is that
it represents the first attempt to develop software error prediction
models that incorporate imperfect debugging, and thus more closely
reflect the actual software error detection and correction process.

The theory and equations developed under this effort will lead to much
needed predictive measures for use by software managers in more
accurately tracking software development projects in terms of test
time needed to achieve given reliability and error objectives. In
addition, the associated confidence limits and other related
statistical quantities developed under this effort will insure more
widespread use of these modeling techniques. Finally, the predictive
measures and equations developed under this effort will be applicable
to current Air Force software development projects and thus help to
produce the high quality, low cost software needed for today’s
systems.

iLQan Y). X«ON'

ALAN N. SUKERT
Project Engineer
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1. INTRODUCTION

A considerable emphasis has been placed in recent years on the
study of software error phenomena with the objective of developing
analytical models which can be used to obtain quantitative measures
for software performance. Most of these studies assume an exponential
distribution for times between software errors with a failure rate
that depends on the number of remaining errors, see for example, [3,
6. 8, 9, 10, 11, 13, 15, 18]).

A key assumption made in most of these studies is that the
errors are removed with certainty, when detected. However, as pointed
out in Miyamoto (7] and Thayer et al. [l15], in practice errors are
not always corrected when detected. The existing models do not provide
a solution for such situations. The purpose of this report, then, is
to develop an analytical model for software error phenomenon when the
errors are not removed/corrected with certainty, i.e., for the case
of imperfect debugging. The model is developed in Section 2 and
expressions for the following quantities of interest are derived in
Section 3@

(i) Distribution of time to a completely debugged system.

(ii) Distribution of time to a specified number of remaining errors.
(iii) Distribution of number of remaining errors.

(iv) Expected number of errors detected by time t .
The distribution of time between software failure is obtained in
Section 4 and approximate solutions using a gamma distrikution
are discussed in Section 5. ‘lumerical examples are used to

illustrate the computations and usefulness of various aquantities.




2. MODEL DEVELOPMENT

The following assumptions are made for developing the model.

(1) The error causing a software failure, when detected, is
corrected with probability p(0<p<1),while with probability
gq(p+gq=1) we fail to completely remove it. Thus, q is the
probability of imperfect debugging.

(ii) Errors in the software package are independent of each other
and have a constant occurrence rate 1\ .

(iii) The probability of two or more errors occurring simultaneously
is negligible.

(iv) The time to remove an error is considered to be negligible
in this model.

(v) No new errors are introduced during the debugging process.

(vi) At most one error is removed at correction time.

Let X(t) denote the number of errors remaining in the package
at time t. We will use this random variable to describe the state
of the error process at time t. Further, let N be the number of
errors at the beginning of the debugging phase, i.e., X(0)=N.

Suppose that there are 1 errors in the package at some time.
Then from assumption (i), we note that after the occurrence of the next

failure
i-1 with probability p

X(t) = (2.1)
i with probability q
In other words, if we were to observe the X(t) process at times of

software failures,then its behavior is governed by equation (2.1).

The transition probabilities Pij from state i to state j,
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A diagrammatic representation of transitions between states
corresponding to equation (2.2) is given in Figure 2.1.

Now, assumptions (i) and (ii) imply that the times between
successive software failures (error occurrences) follow an expon-
ential distribution. Suppose at same time t=1r, x(7) =1,
i=0,1,...,N. Then the probability density function (pdf) fi(t)
of the time to next failure, Ti,is given by the distribution of
the first order statistic of i exponential distributions each with
parameter A\, i.e.,

£,(t) = (i)xe‘*t.(e“t)i-l

or £,(t) = irce™ MM (2.3)
and the cumulative distribution function (cdf) is given by ﬂ
- E

Fy(t) = 1-e™ 2%, (2.4)
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| Figure 2.1 A Diagrammatic Representation of
Transitions Between States of X(t)
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We note that even though the stochastic process X(t) makes
transitions from state to state in accordance with equation (2.2),
the times spent in various states are random and are given by
equation (2.3). Hence (X(t), t=20) forms a semi-Markov process.

A typical realization of this process is shown in Figure 2.2. It
should be pointed out that in our formulation the process X(t)
undergoes both real and virtual transitions. This means that after
an attempt to remove an error the state of X(t) may change or may
remain unchanged. In Figure 2.2 real transitions occur at states
N,N-2 and i while a virtual transition occurs at state N-1.

Let Qij(t) denote the one step transition probability that
after making a transition into state i, the process X(t) next
makes a transition into state j by time t. In other words if a
software package has i remaining errors at time zero, then Qij(t)
represents the probability that the next failure, resulting in j
remaining errors, will be by time t. Hence, for i,j=0,1,2,...,N,
we can write

t
Q4(t) = So P(x (u) =3, T, =ulX(0) =i}.du.

Since the events (X(u)=j) and [Ticuj are independent, we get

t
Q4(t) = So P(X(u)=31X(0) =4} P(T ;=ulX(0)=i) du

t
- So Pyy P(T;=ulX(0)=i].du

t
- Py, S ir.e M gy
0

-1xt)

. vy of1oe
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Figure 2.2

TIME

A Typical Realization of the X(t) Process




or Oij(t) = Pij'l“i(t) (2.5)

for i,3=0,1,2,...,N.
It is obvious that Qij(t) must satisty
013‘”'°o $:720,1,3065:.8, 20
and
N
E 013"’“9*‘1'1'1'0'10---'"-
i=0

The probabilities Qij(t) are obtained by multiplying the
probabilities Pij from (2.2) and F,(t) from (2.4). Thus, for

example,

Oy, N-1(8) = Py noy Fy(®) !
i Qu,n-1(%) = p(l-e-Mt) ;

Proceeding similariy for all i,j we get {Qij(t)) as shown in
Equation (2.6) on the following page.

For known parameters N, p and A, the probabilities Qij(t)
are obtained from Equation (2.6). This equation represents the
basic model that will be used in the following sections for obtain-
ing the various quantities of interest for the software error

phenomenon.
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3. DERIVATION OF VARIOUS QUANTITIES OF INTEREST

3.1 pistribution of Time to a Completely Debugged Software System

Suppose i is the number of errors remaining in a software
system at some time during the debugging process. Let gi,O(t)
and Gi.O(t) denote the pdf and cdf, respectively, of the first
passage time from i to 0. In other words 9i,o(t) and Gi,O(t)
represent, respectively, the pdf and cdf of the time required to
obtain a completely debugged scftware system when the initial number
of errors is 1i.
Recall that at time zero, X(0) =N and at the time of the next
failure
N-1 with probability p
X(t) = (3.1)
N with probability gq
as shown in Figure 2.1l. Now, from the definition of Qi,j(t)’
the probability of going from N to N-1 errors in time [u,u+du]
is dQN.N-l(“)' Then the process X(t) restarts with (N-1) remain-
ing errors at time u and the cdf of the first passage time is
GN_I'O(tJu). For the case of perfect debugging the cdf of the first
paasage time is

t

0 GN-I.O(t-u)'dQN,N-l(“) = QN,N-I* GN-l'o(t) . (3.2)

where * denotes convolution.
Similarly, if the debugging at the first error occurrence is

imperfect, the cdf of the first passage time is

i

i
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t
So Gy,o(t=u) doy y(u) = Qy ¢ * Gy o(t) (3.3)

Since the events depicted in Eguations (3.2) and (3.3) are

mutually exclusive, we get the renewal equation
Gn,0(®) = Oy, n-1 " Gy-1,0(t) * Oy, 5 * Oy, 0t (3.4)
In general, we get the renewal eguation
Op,0'%) ™ By 0en® 0gan, 0l # 0y, 4 49y, 0¥) i3
fo!‘ 1-1,2....0N

where Go.o(t) =1,
We use Laplace-Stieltjes (IL~S) transforms to solve renewal
equations (3.5), where the IL~S of °1.o“" is defined as:
e -
Gy ols) = So e™*t.do; ,(t) (3.6)

From (3.5) we get

Ty, 008) =Ty ;1 (808 ) o(8)+Q; ()8 o(8),i=1,2,..0,8  (3.7)

where
~ ip)
Gy, 4™ = 785 15.9)
and ‘
~ i
Gy, 40) = A, (3.9) ‘

solving (3.7) recursively, we get the I~S§ transform of Gy o(t)
¢

10
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Twptrr = 1 5% TE Z N, 3 s—ipn'xﬁ 13.10)
where
O s ™ (’j’)(-l)f“1 (3.11)

By taking the inverse of EN 0(s) ., the cdf of the first passage

time from N to 0 is:

N
Gy, o(t) = Z CN,J 1 o 39”‘) (3.12)

i=1

The pdf of the first passage time from N to 0 is given by

N
i E: ciph.a PR 1
gN.O(t) cN,j jpAr-e . (3.13)
i=1
To illustrate the above result let us consider a software

system with N=10, 1=0.02 and p=0.8. Then

10
10 e ks
G1o,0(t) = z ,(j )(-1)j 1 (1-e~3(-8) (L02)t)
i=1

The values of this function for various t are plotted in
rigux;e 3.1. From this plot we note that the probability of getting
an error free system by 275 time units is 0.9 and by 500 units
is 1.0. Such a plot is useful for calculating the time required
to get an error free system with a desired probability.

Similar plots for values of p=.85, .90, .95 and 1.0 are also
shown in Figure 3.1. As would be expected the cdf for a larger p
dominates that for a smaller p. In other words the better the

debugger, the faster is the process of debugging.

11
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Figure 3.1 CDF of Time to a Completely Debugged
Software System
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3.2 Distribution of Time to a Specified Number of Remaining Errors

In many instances a completely debugged software is not cost
effective and we may be willing to tolerate a certain number of
remaining errors, say ng which will ensure some desired reliability.
The distribution of time to n, is then of interest.

Using an approach similar to that of Section 3.1 we get the

renewal equation

Gy,n,(t) = Q5 1% ,n (t)+Q; §%Gy n (¥,
0 0 0
for i-no+1,...,N (3.14)
where G“o'“o(t)-l .
Then the I~S transform of GN (t) 1is given by
lno
n-n,
N \ z (ng+3)PA
L PN Ao BN, 3uny 5+ (nge3 BN i,
j-n°+1 =1
where
N j=1 i
B ] - . .
Nojono L no.j!(N-no-j)l (-1) no+ (3.16)

The cdf is obtained by taking the inverse L~S transform of

(s) ,
By,

- (np+3)
- n°+ P\t
(t) = By l-e s (3.17)
GNlno jz-l ,joﬂog } i
and the pdf is
N-no
(t) E B (ny+3)PA B st (3.18) ‘
g = n.+ PAe .
Nono Y N:jono 0

13




To see the nature of the pdf and cdf, let us consider the
case when N=10, \=.02 and p=0.9. These are shown in Figures
3.2 and 3.3 ,respectively, for various values of ng . The plots are
self explanatory.

Now let a random variable T denote the first passage time

N.,n
0
from N to n, errors. Then, from (3.18) we can obtain the l"'h

moment of TN.no as
N=n
L
E[TN.no]- Z BN.j.no r(g+l) - (3.19)
I=1 ((ng+3lip)

From (3.19), the mean and variance are

N-n
0
ETN.no = Z Bn,j,no/(no*j)m (3.20)
i=1
2 2
Vat(’l‘n'no) " ETy,n, (mmno) (3.21)

The values for mean and variance of first passage time for various

n, are given in Table 3.1, where N=10, p=0.9 and \=0.02.

14
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Figure 3.2 PDF of Time to a Speciffied Number
(no) of Remaining Errors
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Figure 3.3 CDF of Time to a Specified Number
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Table 3.1

e

Mean and Variance of First Passage Time for Various n,

(N=10, p=~ 0.9, A= 0.02)
n° Mean Variance Standard Deviation
9 5.56 30.86 5.56
8 11.73 68.97 8.30
7 18.67 117.19 10.83
6 26.61 180.18 13.42
5 35.87 265.92 16.31
4 46.98 389.37 19.73
3 60.87 582.27 24.13
2 79.39 925.21 30.42
1 107.16 1696.81 41.19
0 162.72 4783,23 69.16

17




3.3 Distribution of Number of Remaining Errors

First, we develop the expressions for the distribution cf the

the expected number of remaining errors at time t is obtained.

Let PN & (t) represent the probability that there are n,
o
errors remaining in a software package at time t, given that there

are N errors at the beginning of debugging, i.e.,

PN,no(t) = P(X(t) =nolx(0) =N} (3.22)

which is the so-called state occupancy probability. Conditioning
on the next failure and following an approach similar to that of

Section 3.1, we get the following renewal equation.
P (t) = e +Q *P (t) , n,<N. (3.23)
Ngefg ny.Ng Ngedy 0

conditioning on the first passage time, we get

P (t) =P *G (t) , n.<N. (3.24)
N.no no,no N,no 0

By taking the L~S transform of Pt w (t) and rearranging, we

0’'"0
get
n,pi
3] $) = b e A
no,no( ) s+nopx s+nopk (3.25)
Substituting (3.25) into the I~S transform of PN n (t) , we obtain
.
0
- n.px o
)2 (s) =G (8) =—2— G (s)
N,no N,no s+nopk N.no
G . (BY=g, . _SiB)., (3.26)
N,no N,no 1

18

number of remaining errors after a specified time period, t. Then,




~

By taking the inverse [~S transform of N.n.(8) W get
. o R
PN,no(t) - GN.no(t) -GN‘no_l(t) ' no-O,l,Z,...,N (3.27)
where
§
Gy, n(t) = 1,

GN,-I(t) = 0. ’

Figure 3.4 shows P (t) for various n where N=10, p=0.9,

N.,n o'
0

and A =0.02. From this figure we can see how the distribution of

the number of remaining errors changes with time.

Now, we obtain the expected number of remainina errors in the

T aT——_—

software at time t as follows:

N

E[X(t) IX(0)=N] = Z gy, ny (*)
b

N
- 2 nogGN'no(t) -GN,no_l(t)}

N
- 2 { l-GN'no(t)}

Now, using the expression in (3.17), we get

E(X(t) 1X(0)=N] = Ne"PA% (3.28) 3
Figure 3.5 shows the expected number of remaining errors at
time t for various p, where N=10, and A =0.02. As can be seen,
software errors can be eliminated faster if larger values of p are
chosen. In other words, a good debugger can eliminate software

errors fast. For example, for no-l a debugger with p=1 requires

19
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Figure 3.4 Probability Distributiong of Number of
Remaining Errors, Nt at Time t
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EXPECTED NUMBER OF REMAINING ERRORS

1 | | | | | 1 | l
o 20 40 60 80 100 120 140 160 180 200
TIME

Figure 3.5 Expected Number of Remaining

Errors versus Time t
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debugging time t =118, and the debugger with p=0.8 requires

t = 148, The difference between the two debuggers is 30 in the sense

of expectation.

22
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3.4 Expected Number of Errors Detected by Time t

we introduce a new random variable N(t) which denotes the
total number of errors detected by time t . The process [N(t), t 20}
is called a counting process. We are interested in obtaining the
expression for the expected number of errors detected, rm(t), during the

debugging period, t, when the initial number of errors is N, i.e.
M (t) = E[N(t) X (0) =N] (3.29)

which is called a Markov renewal function. By conditioning on the

next software failure, we obtain the renewal equations.
M.(t) = F.(t) + pM. *F,(t) + gM_ *F_(t) , w1 v .
J( ) J( ) +p j=1 J( ) +q j ]( ) B N ( 0)
where Mo(t)z(J.

Using the L~S transforms of Mj((), jm]l,2,.veaN, We get

N
Sho o & SaARE. 4 - »
M (s) - E v g E (,N'k_lm 4 (3.31)

k=1 j=k k=1
The expression for MN(t) in terms of the first passage time distri-
bution is then given by

N

= ;1- - :.:.N- - -pXt
My () pkz;"u.k-l“" N (1-e PR (3.32)

Note that if we let t -« we have

. N
My(=) = O (3.33)

which i1s the expected number of software errors detected by the end

of debuwaging.
Figure 3.6 shows the expected number of errors detected by
time t, MN(t). for various N when p=0.9 and \ =0.02.
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Let us now consider the case when the detected errors are
separated as new errors and errors which were not corrected due
to imperfect debugging. Let NI(t) be a random variable which
denotes the total number of imperfect debugging errors by time ¢t .

Then we can show that

DN(t) = qM (t) (3.34)

where
Dy (t) = E[N(t)[X(0)=N] .

Note that DN(-) = q .

T|Z

Plots of MN(t) and DN(t) for the case when N=10, p=0.9

and A=0.02 are shown in Figure 3.,7.




20

16

| i §
DETECTED ERRORS

N=10
p=09
A =2002

TOTAL

IMPERFECT DEBUGGING

o 40

! L | |

120
TIME

Figure 3.7 Plots of M.N(t) and DN(t)

26




4. DISTRIBUTION OF TIME BETWEEN SOFTWARE FAILURES

In the previous section we studied the stochastic behavior of
the number of errors in the software system during the debugging
period. In this section we investigate the distribution of the
time between software failures and study the problem of reliability
growth. From Section 2 recall that the random variable T denotes the
time to next failure when the number of remaining errors is i and
rt(c) is the cdf of T, . Let X denote the time between the
(k=1)st and kth software failures and Ok(x) be the cdf of xk.
Note that Xy does depend on the number of remaining errors at the
(k=1)st failure but this number is not explicitly known. Further,
let "x' a r.v., denote the number of remaining errors between the

(k=1)st and kth software failures. Then, from Section 2 we have

"1 = N (4.1)

01(8) = FN(X). (4.2)
and

Oz(x) = pFN-l(x)-thN(x) . (4.3)

In general, we have

N
hx) = P SX) = D (X SXIT=1)p(Re=i) (4.4)
i=N-(k-1)

or
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k-1

Qk(x) - 2 P(xksxmk=N-k+j+1)p(7zk=N-k+j+l)
3=0
k-1

= k=1 k-j=1 3
3}-':‘( j ) ’ T (mg=1) 7 (4.5)

This is called a mixture of exponential distributions with binomial
mixing portions. As proved in Barlow and Proschan [1],

ok(x) is a decreasing failure rate (DFR) distribution. The reli-
ability function at the kth stage, i.e., between (k-1)st and kth

failure, is given by

Ry (x) = P(X; >x]

= l-ok(x)
& k=1 3
= & k- "1 j—
Z( j )p q FN-(k—j-l) (x) (4.6)
=0
where
Fy(x) = 1=Fu(x) = R (4.7)

Also the corresponding failure rate is given by

£ (x) = o (x)/Ry (x) , (4.8)

where Qk(x) is the p.d.f. of xk The behavior of Rk(x) with
respect to k is of interest. To study this behavior we have the

following theorem.

Theorem: The reliability function Rk(x) is increasing in k for

any time x>0, i.e.
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R (x) <R, (x), k=1,2,... (4.9)
Proof: It suffices to show that

YRy (x) = R, (x) =R, (x) (4.10)

is positive for x>0. Then we have
k-1

k=1\ x- -
VR, (x) = Z( j )pk jqj {FN_(k_j)(x) -FN-(k-j-l)(x)J . (4.11)

=0

It holds that for x>0, 3=0,1,2,...

Hence we get

VRk(x) >0 for x>0. (4.13)

Q.E.D.
The reliability growth curves are shown in Figure 4.1, where

N=10, p=0.9 and A =0.02. The p.d.f.'s and the failure rates
of xk are shown in Figures 4.2 and 4.3, respectively.

Note that the number of software errors remaining at the time ﬂ
between (k=l)st and kth software failures is N-(k~I-1l) , where the
random variable I is distributed as a binomial with (k-1,q) . ﬂ
Therefore, the expected number of software errors remaining is given
by N~p(k-1l) . This observation will be useful in constructing a

likelihood function to estimate unknown parameters.




REUABILITY

06

04

02

T T
TIME TO S/W FAILURE N=10

p =09
A =002
8 <
N e o
k=10
& 7
4
T 5 -
N
3
k= {
| L 1
o) 5 10 15 20
TIME
Figure 4.1 Reliability Growth Curves

30




02

T T
TIME TO S/W FAILURE

1

N=10
p=09
A=002
k=l
015 5
N
N
5 AN\
S RN
AN +
—
\
005— S 9
\\\\‘\ k=10
‘-‘\\\\\\\
] J :
00 S 10 |5L
TIME

Figure 4.2 PDF of Time Between Software Failures

31




FAILURE RATE

TIME TO S/W FAILURE

-2

0I5 L

-5

-6

e
|
]

~7

005

0o | |
() o 10 15 20
TIME 1

Figure 4.3 Failure Rates of Time Between
Software Failures

32 . 1




|
|
1

il 3 ol o el A My A R S WL P TR TN s T o kes

5. GAMMA APPROXIMATION FOR A LARGE-SCALE SOFTWARE SYSTEM

In Section 3 we obtained the quantities of interest, e.qg.
state occupancy probability and renewal function, in terms of first

passage time distribution. Once we have computed GN - (t) , we can
L
0
N,no(t) and MN(t) . However, it should be noted

that the computation of G

easily obtain P

N,n
scale software system because of the difficulty in computing the

(t) is almost impossible for a large=-
0

coefficient, B Through numerical study we have found that

NyJ, o °
the computatioiis become very messy and almost impossible for
N—no 220. In this section we study methods for obtaining approx-
imate solutions for these quantities.

Of prime interest is the approximation of first passage time
distribution by using a Gamma distribution. From a study of the
pdf's of first passage times in Figure 3.2, we feel that these dis-

tributions might be approximated by Gamma distributions. We use

the method of moments to obtain estimates of the parameters of a

Gamma distribution corresponding to GN = (t) . 1In order to do that,
%A,
we first discuss how to obtain the moments of Gy n (t) without
" 20
computing the coefficient B o et T be a random variable

N.j,no N.n,
which denotes the first passage time from N to ng The random

variable of holding time at state N, denoted by T has an exponential

N '
distribution with parameter N\ . Therefore, we have

wy = ETy = 1/N)\ (5.1)

var (1) = E(’I‘N-uN)2 - 1/000)° . (5.2)

The following recursive equations are easily obtained:




T

= Ty = PT +qT

Non N-l.no N.n

0 0

+ pT (5.3)

SO = T L + QT
N l.no N=1 N 2.n0 N l.no

Tn

= T + QT
0+l.n no+1 n.+l,n

Q 0 0

solving (5.3) recursively, we get
1
P . .4
pETj (5.4)
Then, we have

N
1 -l
“N.no . m*N'n P 2 .s'rj P 2 1/9\ (5.5)

and

var(ng o ) = ) var(ry) = 2. vant, (5.6)
0 P j-no+1 P j-no+l

These are identical to the ones obtained in Section 3.2. Suppose

the Gamma distribution corresponding to GN a
L
0

meter o and a scale parameter p, 80 the mean and variance are

(t) has a shape para-

given by o/8 and o/az, respectively. Then the parameters o and

f can be estimated by using the method of moments, i.e.,

N .
% 1/(JA) = o/8 (5.7)
j-no+1
N
& Y vau?-an, (5.8)
j-no+1
Therefore, we have
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P Z 143\)
j=n_+1
. 0 (5.9)

Z 1/(5n)3

j=n0+1

= [ Z 1/(3x)]2/ Z 1/(j1)2 (5.10)

j=n +l j=n +l

w?
]

Q>

Numerical examples for various no are given in Table 5.1,
where N=100, p=0.9 and A=0.02. We also compute the relative
losses for third and fourth moments around the mean to see how good
the approximations are. Since the third and fourth moments around
the mean of a Gamma distribution with parameters o and B are given
by 2a/a3 and 9a/84. respectively, we define the relative losses

for third and fourth moments around the mean as

3 3
IE(T -4 )7 - 2a/B
N,no N,no

3 (5.11)
E(T — )
N'“O N,no
and
4 4
IE(TN'nO “N'“o) - 9/8B
a (5.12)
E(T - )
N,no N,no
respectively, where
N N
BTy . =ng o )0 =& E(T ;)] = 2 17603 (5.13)
N,no N,no p3 ‘ p B p3
J=n0+1 J-no+1
and
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Table 5,1
Gauma Approximation for First Passage Time Distributions
(N = 100, p = 0.9, A = 0.02)

Relative Loss (%)

no Mean Variance ; E 3rd Moment 4th Moment
10 125.47 263.01 59.85 0.477 28.15 4.21
15 103.84 168.34 64.05 0.617 21.58 2.70
20 88.31 119.82 65.09 0.737 16.81 1.92
25 76.19 90.31 64,28 0.844 13.19 1.44
30 66.24 70.47 62.27 0.940 10.37 1,12
35 57.81 56.23 59.44 1.028 8.14 0.89
40 50.49 45.49 56,04 1,110 6.35 0.72
45 44,02 37.12 52,21 1,186 4,92 0.58
50 38.23 30.40 48,07 1,257 .77 0.47
55 32,99 24.90 43,70 1.324 2.84 0.39
60 28.19 20,30 39.15 1,389 2,09 0.31
70 19.70 13.07 29,69 1.507 1.03 0.20
80 12,33 7.63 19,92 1,616 0.41 0.11
90 5.82 3.39 9.99 1,716 0.09 0.05
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2 wytes D ZE(Ti‘ui)ZE(Tj-uj) ]

i=no+l j>i

_l_L
o
N
up—{:g Z 1/(Jx) +6 Z Z(l/n) (1/32 ] (5.14)

j=n,+1 i=n otl 321
0

Figure 5.1 shows the relative losses for third and fourth
moments around the mean with N, where p=0.9, »=0.02 and n, =0.2N
As we see in this figure, the maximum relative losses for third and
fourth moments around the mean are about 17% and 10% , respectively.
This means that the Gamma approximation of first passage time dis-
tributions for large-scale software systems is reasonably good.

Plots of first passage time using Gamma approximation for

N=100, p=0.9 and A=0.02 are given in Figure 5.2 for n.=0,1,2,3,5,

0
and 9. Also, plots of state occupancy probabilities using this

approximation are given in Figure 5.3.
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6. CONCLUDING REMARKS

An imperfect debugging model (IDM) for software systems
was developed in this report. Various quantities of interest were
derived in terms of the first passage time distribution of the
underlying semi-Markov process. Computations for and usefulness
of these quantities were illustrated via numerical examples.

An approximation method for obtaining these quantities for large-
scale software system was also presented.

It should be pointed out that most of the models reported
in the literature, for example the models in (3], (6], (9], [1l0],

and [13), are special cases of IDM.
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